However, there is another side to this story. Geologists (some anyway) have long known that natural oil seeps occur, and have occurred as long as the Earth's sediments have been generating oil and gas. Oil fields leak their hydrocarbons to the surface, whether on land or beneath the oceans. Hydrocarbons are less dense than rocks and the water they contain, so the oil and gas is continually trying to escape to the surface. Eventually, given enough time, it all does.
The following satellite images from NASA prove this theory: oil and gas are always naturally leaking and "polluting" the oceans, and in a big way, as can be seen from these images. Also, consider this is going on 24 hours per day, seven days per week, 365 days per year. So maybe "big oil" companies are not the careless, evil polluters they're accused of being.
Another quite amazing thing to consider is the oceans must continually clean themselves. Somehow fish, sea plants, and corals survive. Somehow there remain pristine white sand beaches. Is the public being deceived about the damaging effects of the oil industry? I say yes.
Peter


Although accidents and hurricane damage to infrastructure are often to blame for oil spills and the resulting pollution in coastal Gulf of Mexico waters, natural seepage from the ocean floor introduces a significant amount of oil to ocean environments as well. Oil spills are notoriously difficult to identify in natural-color (photo-like) satellite images, especially in the open ocean. Because the ocean surface is already so dark blue in these images, the additional darkening or slight color change that results from a spill is usually imperceptible.
Remote-sensing scientists recently demonstrated that these “invisible” oil slicks do show up in photo-like images if you look in the right place: the sunglint region. This pair of images includes a wide-area view of the Gulf of Mexico from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite on May 13, 2006 (top), and a close up (bottom) of dozens of natural crude oil seeps over deep water in the central Gulf.
The slicks become visible not because they change the color of the ocean, but because they dampen the surface waves. The smoothing of the waves can make the oil-covered parts of the sunglint area more or less reflective than surrounding waters, depending on the direction from which you view them.
The usual technique for mapping oil slicks from space uses radar, which bounces pulses of radio waves off the wave-roughened surface of the water and detects the amount of backscattered energy. The downside of using space-based radars to map oil slicks is that they don’t provide routine coverage of large areas, and oil slicks may evaporate or disperse significantly within a day. The researchers suggest that tracking oil slicks in the wide sunglint region of daily Terra and Aqua MODIS images may be a better avenue for comprehensive, near-real-time monitoring of large oil spills and natural seeps in marine ecosystems.
References
Hu, C., Li, X., Pichel, W.G., and Muller-Karger, F. E. (2009). Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery. Geophysical Research Letters, 36, L01604.
NASA image created by Jesse Allen, using data obtained from the Goddard Level 1 and Atmospheric Archive and Distribution System (LAADS). Caption by Rebecca Lindsey.
Instrument:
Terra - MODIS